

Coordination Chemistry Reviews 148 (1996) 71–96

Synthesis and metallophilic properties of troponoid thiocrown ethers

Akira Mori a, Kanji Kubo b, Hitoshi Takeshita a,*

Institute of Advanced Material Study, 86, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816, Japan
 Graduate School of Engineering Sciences, 39, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816, Japan

Received 27 January 1995

Contents

At	ostract
1.	Introduction 7
2.	Preparation of troponoid dithiocrown ethers
	2.1. From 5-hydroxytropolone (1)
	2.2. From hinokitiol
	2.3. From tropones
3.	Complex formation
	3.1. 4,7-Disubstituted troponoid dithiocrown ethers 6
	3.2. 3,7-Disubstituted troponoid dithiocrown ethers 11d and 11e
	3.3. 2,7-Disubstituted troponoid dithiocrown ethers 20 and 23
	3.4. 2,7-Disubstituted troponoid dithiocrown ethers 20, 21c,d and 26 and 4,7-disubstituted
	troponoid dithiocrown ethers 30 with thiocyanates
4.	Transport
5.	Association constant
	5.1. UV spectrometry
	5.2. ¹ H NMR spectrometry
6.	Stereostructure of the mercurophilic dithiocrown derivative
7.	Conclusions
	ferences

Abstract

A new class of ionophores with troponoid and thiocrown ether units was prepared. Cation-binding properties of troponoid dithiocrown ethers were characterized using UV and NMR spectroscopies. They have affinity with metal ions; in particular, they showed high affinity with Hg^{2+} . Transport of Hg^{2+} through a CHCl₃ liquid membrane with troponoid dithiocrown

^{*}Corresponding author.

ethers was examined in a U-type cell. From an aqueous solution of HgCl₂ and CuCl₂, Hg²⁺ is transferred selectively and smoothly, while the Cu²⁺ remained quantitatively in the original solution. The cavity size of dithiocrown ethers is one of the requirements for effective extraction and transport of Hg²⁺. However, derivatives with a smaller cavity still extract and transport Hg²⁺. A polymer-supported troponoid dithiocrown ether was prepared to transport Hg²⁺ effectively and repeatedly. Comparing the troponoid dithiocrown ether with the benzenoid dithiocrown ether with a similar cavity size, the former was more effective for the transport of Hg²⁺. It is proposed that the tropone ring assisted the release of Hg²⁺ from the complex by Coulomb repulsion between the protonated tropone ring and Hg²⁺.

Keywords: Ionophores; Troponoid thiocrown ethers

1. Introduction

Crown ethers have played an important role in host-guest chemistry since the discovery of the formation of their complexes with various metal ions [1,2]. At the same time, considerable attention has been devoted to the development of new ionophores to achieve selective complexation of metal ions; the design of these highly selective ionophores is of great importance with respect to the effective separation and recovery of metal ions. In particular, metal ions such as Hg^{2+} and Cd^{2+} which are harmful to ecosystems should be removed and recovered efficiently.

2-Hydroxy-2,4,6-cycloheptatrien-1-ones (tropolones) enols of a cyclic α-diketone form complexes with metal ions [3-5]. It is known that hinokitiol exists in the heartwood of a conifer, *Chamaecyparis taiwanesis*, both as a free form and as an iron complex, called hinokitin, which is soluble in organic solvents [6]. However, few systematic studies of the application of this unique affinity towards metal ions of troponoids have been carried out. Asao and Kikuchi [7] observed that 2,4,6-cycloheptatrien-1-one (tropone) and 2-methoxytropone also formed complexes with metal ions; tropone formed a complex with HgCl₂, a 2:1 complex with ZnCl₂, and 1:1 complexes with CdCl₂, CoCl₂, MnCl₂, or NiCl₂, indicating that the free hydroxyl group of tropolones is not necessary for complexation. Tropones are easily

Scheme 1.

liberated from their complexes by hydrolysis, chromatography on SiO_2 , or treatment with dioxane [7]. Thiocrown ethers [8–13] show high affinity toward soft, heavy metal ions such as Ag^+ , Hg^{2+} , and Cd^{2+} , but they have no affinity towards hard metal such as like K^+ and Na^+ .

Based on these observations, we are interested in the host-guest chemistry of the crown ethers with a troponoid unit, which have two complexing sites. The unique affinities for metal ions of troponoids and crown ethers would cooperate to construct a new class of readily synthesizable ionophores. Here, we demonstrate the synthesis and some physico-chemical properties of Hg²⁺-capturing dithiocrown ethers of troponoids.

2. Preparation of troponoid dithiocrown ethers

2.1. From 5-hydroxytropolone (1)

It has been recognized [14] that the introduction of alkyl substituents at troponoid nuclei is limited since electrophilic substitution reactions of troponoids were inhibited under acidic conditions because of the formation of a tropylium cation. Previously, we have found that 4,6-bis(chloromethyl)-2,5-dimethoxytropone (2) [15] was formed from ethyl chloroformate and 4,6-bis(morpholinomethyl)-2,5-dimethoxytropone (3) [16], which was prepared from the Mannich reaction between 1 and a mixture of morpholine and formaldehyde followed by methylation with diazomethane.

When a MeOH solution of 2 reacts with oligoethylene glycol bis(mercaptoethyl) ethers $4\mathbf{a}-\mathbf{e}$, two types of macrocyclic dithiocrown ethers $5\mathbf{a},\mathbf{b}$ or $6\mathbf{c}-\mathbf{e}$ are formed, respectively [17,18]. In the reaction of 2 with bis(mercaptoethyl) ether (4b), the product is $5\mathbf{b}$. The structure of $5\mathbf{b}$ was deduced from NMR spectral analysis, which showed two proton signals on the seven-membered ring at δ 6.87 and 7.36 along with two methoxyl signals at δ 3.21 and 3.32. Similarly, the reaction of 2 with

Scheme 2.

bis(mercaptoethyl) thioether (4a) gave 5a, whose structure was deduced as depicted. The reaction of 2 with triethylene glycol bis(mercaptoethyl) ether (4e) gave another type of product 6e, whose ¹H NMR spectrum showed three methyl singlet signals at δ 2.60, 3.40, and 3.89 along with one aromatic signal. Therefore, allylic substitution is evident. The position of the newly-generated methyl group was deduced from the chemical shift (δ 6.82) of the proton on the seven-membered ring which is appropriate for that of the vicinal position of the methoxyl group. Similar reactions of 2 with 4c,d gave the corresponding derivatives 6c,d.

There were two reaction modes depending on the chain length of 4; the shorter ones gave S_N2 type products 5 via "path a", while the longer ones the S_N2 type products 6 via "path b". The chloromethyl group at C-4 in 2 was more reactive than that of C-6 because of the presence of the electron-donating methoxyl group at C-5.

Next, we focused our attention on preparing macrocyclic thioethers substituted on the C-3 and C-7 positions of troponoids. When an aqueous KOH solution of 5-butoxytropolone (7), prepared from 1, reacts with formaldehyde, 5-butoxy-3,7-bis(hydroxymethyl)tropolone (8) is obtained [19]. After the methylation of 8 with diazomethane, 5-butoxy-3,7-bis(hydroxymethyl)-2-methoxytropone (9) was treated with thionyl chloride to give the corresponding 3,7-bis(chloromethyl) derivative 10. The condensation of 10 with 4d and 4e gave the corresponding macrocyclic thioethers 11d and 11e, respectively. In these cases, the substitution reactions occurred at the side chains.

Scheme 3.

$$\begin{array}{c} \text{N-BuO} & \begin{array}{c} \text{1) KOH, HCHO aq.} \\ \text{OH} & \begin{array}{c} \text{2) CH}_2\text{N}_2 \\ \text{3) SOCl}_2 \end{array} \end{array} \\ \text{n-BuO} & \begin{array}{c} \text{8} & \text{R = H, X = OH} \\ \text{9} & \text{R = Me, X = OI} \\ \text{OR} & \text{10} & \text{R = Me, X = CI} \end{array} \\ \text{N-BuO} & \begin{array}{c} \text{N-BuO} & \text{N-BuO} \\ \text{N-BuO} & \text{N-BuO} \\ \text{N-BuO} & \text{N-BuO} \end{array}$$

Scheme 4.

The ¹H NMR spectra are informative concerning the mobility of the macrocyclic ether rings. In the ¹H NMR spectrum of **6e**, the methylene protons on the carbon bearing the sulfur atom appeared as a broadened signal at δ 3.83, while the methylene protons of **6c** and **6d** appeared as magnetically non-equivalent AB-type signals at δ 3.12 and 4.37 for **6c** and δ 3.14 and 4.43 for **6d**, respectively. This clearly shows that the conformation of the macrocyclic rings in the shorter crown derivatives is fixed on the NMR time scale. The same is true for the case of **5**, prepared only from the short oligoethylene glycols; the methylene protons of both **5a** and **5b** appeared as AB-type signals.

The rotational barrier of the macrocyclic ether ring of **6d** could not be estimated since the variable temperature ¹H NMR spectra in DMF- d_7 up to 150 °C disclosed no indication of coalescence of the AB-type methylene proton signals. However, according to the ¹H NMR spectra of **6e** measured in CD_2Cl_2 at variable temperatures, the methylene proton signal on the adjacent carbon bearing the sulfur atom appeared at ca. δ 3.8 as a unified 2H signal at room temperature, but the signal began to split at -50 °C. At -90 °C, the doublet at the lower field of the AB-type quartet signals appeared at δ 4.40 (J = 12.5 Hz). Unfortunately, the counterpart at the higher field, estimated to be at ca. δ 3.2, was hidden underneath other signals (Fig. 1).

The chemical shift of the hidden methylene proton could be estimated to be at δ 3.24 from the chemical shift of the unified methylene protons at δ 3.82. The chemical shift difference of the methylene protons being about 313.2 Hz led to a rotational barrier of the macrocyclic ether ring of **6e** of 43.5 kJ mol⁻¹ at -50 °C [18].

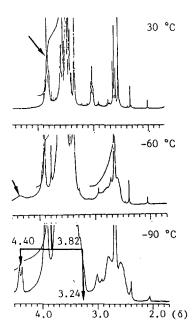


Fig. 1. Variable temperature NMR spectra of 6e in CD₂Cl₂.

2.2. From hinokitiol

The Wittig-type rearrangement of 7-bromo-4-isopropyl-2-(4-nitrobenzyloxy) tropone (12) prepared from 7-bromohinokitiol with NaH at room temperature gave 7-bromo-2-(α -hydroxy-4-nitrobenzyl)-4-isopropyltropone (13) [20]. Upon treatment with p-tosyl chloride, 13 afforded 7-bromo-4-isopropyl-2-(α -tosyloxy-4-nitrobenzyl) tropone (14). The base condensation of 14 with 4a-f gave macrocyclic dithiocrown ethers 15a-f, respectively [21].

Catalytic reduction of 15e with Pt-on-carbon catalyst afforded the 4-aminophenyl derivative 16e. The pyridine-mediated condensation of 16e with the acyl chloride of polyethylene carboxylic acid [22], derived from an oxidized polyethylene, in toluene gave the polymer supported dithiocrown compound 17e. An anilide 18 was prepared from the polymer in order to compare the ability of the extract and the transport of metal ions with 17e [23].

2.3. From tropones

Since the synthetic routes from 5-hydroxytropolone and hinokitiol required long steps, we planned to use readily-available 2,7-dibromotropone derivatives for the starting materials of troponoid dithiocrown ethers. The reaction of 2,7-dibromotropone (19) [24] and 4b-f gave the 1:1 condensates 20b-f and 2:2 condensates 21b-d [25]. With longer bis(2-mercapto) ethers, 2:2 condensates were

Scheme 5.

not formed due to the disadvantage in the entropy factor. The structures of new compounds were clarified by NMR spectroscopy. In 1H NMR spectra, all **20b-f** had A_2B_2 -type aromatic proton multiplets, and their overlapping ^{13}C NMR signals showed that **20b-f** were symmetric compounds. These spectroscopic features were also observed in the NMR spectra of **21b-d**.

In addition, the reaction of 7-bromo-4-isopropyl-2-(p-tolylsulfonyloxy)tropone (22) with 4b-f gave the corresponding 1:1 condensates 23b-f and 2:2 condensates 24b-d. The ¹H NMR spectra of 23b-f showed ABX-systems in the aromatic proton regions. Although the isopropyl group on the seven-membered ring made these derivatives unsymmetrical, the ¹³C NMR spectral chemical shifts closely resembled each other. In this respect, the ¹H and ¹³C NMR spectra of 24b-d showed them to be regioisomeric 1:1 mixtures, which were chromatographically inseparable. The yields of the condensates are compiled in Scheme 6. Throughout the reactions, the yields of 20 and 21 were lower than those of 23 and 24, but one-step formation of the dithiocrown derivatives should be satisfactory.

The NaH-mediated condensation of 2,4,7-tribromotropone (25) with 4b and 4c afforded the products 26–30, respectively [26]. As shown in Scheme 7, the yields of the 2:2 condensates were low; 4b gave a trace amount of 2:2 condensates 27 and 28, while 4c gave no 2:2 condensate. Both crystallines 27 and 28 were regioisomeric disubstituted products; the structural difference was confirmed by the ¹H NMR spectra. The methylene protons of the central ethylene groups at δ 3.79 (4H, t, J = 5.5 Hz) and 3.84 (4H, t, J = 5.5 Hz) of 27 show this to be the "cis"-isomer. On the other hand, the ¹H NMR spectrum of isomer 28 with a higher melting point showed

Scheme 6.

overlapping ethylene proton signals at δ 3.81 (4H, t, J=5.5 Hz) and 3.83 (4H, t, J=5.5 Hz) and thus is probably the "trans"-isomer. The by-product (30) was formed from the reaction of 4c and 25. An alternative structure (30′) was eliminated on the basis of the ¹H NMR chemical shifts of the aromatic protons.

The benzenoid dithiocrown ethers were prepared by the NaH-mediated condensation of 1,3-benzenedithiol (31) and pentaethylene glycol bis-p-toluenesulfonate (32). The ¹H NMR spectra of the 1:1 condensate 33 and the 2:2 condensate 34 and their overlapping ¹³C NMR signals showed that they were symmetrical compounds.

3. Complex formation

3.1. 4,7-Disubstituted troponoid dithiocrown ethers 6

The cation-binding behavior of troponoid dithiocrown ethers was investigated by UV spectroscopy. Dithiocrown ethers 6 have absorption bands around 240, 295, 355, and 385 nm. When metal salts such as NaCl, KCl, and AgNO₃ were added to a MeOH solution of 6, the spectra did not change. Upon addition of HgCl₂ the positions of the absorption bands changed slightly, and the extinction coefficient clearly increased, indicating complexation of 6e and Hg²⁺.

Scheme 7.

Next, we used NMR spectroscopy since it may offer a convenient tool to identify the metal-binding site of the complex. When an aqueous solution containing $HgCl_2$ was shaken with a $CDCl_3$ solution of **6**, Hg^{2+} was extracted into the $CDCl_3$ layer. The quantitative amount of Hg^{2+} was liberated simply by addition of 2 M HCl or aqueous NaCl (>20%), and the procedure can be repeated. The liberated Hg^{2+} was titrated by UV spectrometry as a 1,5-diphenylthiocarbazone (dithizone) complex. Particularly diagnostic for Hg^{2+} -complexed **6e** is the appearance of AB-type NMR signals at δ 3.66 and 3.90 (J=17.2 Hz). All other NMR signals of the host molecules of the complexes experienced a downfield shift to some extent. The ratio of **6e** to Hg^{2+} was determined to be 1:1. Further, from an Hg^{2+} -containing 3% NaCl solution, Hg^{2+} was extracted by **6** as an inclusion complex. Moreover, from 3% $MgCl_2$ solution, Hg^{2+} was smoothly extracted by **6**. Thus, Na^+ and Mg^{2+} , abundant cations in sea water, did not interfere with Hg^{2+} extraction.

The NMR spectral change upon formation of a complex of Hg^{2+} with **6e** and **6d** disclosed information about the molecular structure (Figs. 2 and 3). At first, the methylene protons at δ 3.83 of **6e** became an AB-type pair of doublets at δ 3.66 and 3.90 (J=17.2 Hz) in contact with Hg^{2+} . This is due to a freezing of the conformation, which should be a result of complex formation with Hg^{2+} . In the case of **6d**, the methylene signals showed down-field shifts upon the complex formation, δ 3.12 and 4.37 to 3.22 and 4.40, respectively. It is clear that the quasi-axial proton, appearing at a higher field, suffered substantial influence from the complex formation.

However, complex formation did not cause significant changes in the physical and chemical properties of the troponoid structure; a change from δ 179.1 to 178.2 in the chemical shift of the ¹³C NMR spectrum of C=O of **6e** is very small.

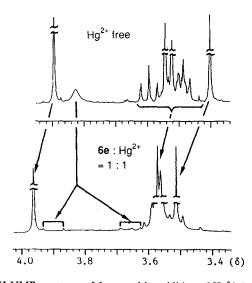


Fig. 2. Change in ¹H NMR spectrum of **6e** caused by addition of Hg²⁺ (adapted from Ref. 17).

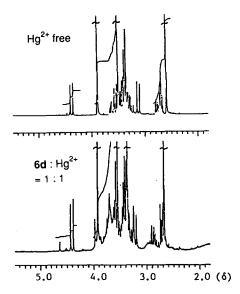


Fig. 3. Change in ¹H NMR spectrum of **6d** caused by addition of Hg²⁺.

3.2. 3,7-Disubstituted troponoid dithiocrown ethers 11d and 11e

Complex formation of 11d with $HgCl_2$ showed all the NMR signals shifted to a lower field. The broad signals between δ 3.1 and 3.4 and between δ 4.3 and 4.6 of 11d became triplets upon complexation. These spectral features indicated a freezing of the conformation. The IR spectrum of the complex of 11d with Hg^{2+} showed that the absorption bands of C=O and C=C were shifted to the lower frequencies by $10-17~\rm cm^{-1}$. In the complex of 11d with $HgCl_2$ the carbonyl oxygen may interact with Hg^{2+} to form complexes [19].

On the contrary, the NMR spectrum of 11e showed rather more sharp signals than that of 11d, which indicated that the conformation of 11e with the longer chain is more mobile within the NMR time scale [19]. The NMR spectrum of the Hg²⁺ complex of 11e also showed that all of the signals shifted to the lower field.

3.3. 2,7-Disubstituted troponoid dithiocrown ethers 20 and 23

The tropone rings of the dithiocrown ethers 20 and 23 are more electron-rich than 6 and 11 since two sulfur atoms are directly connected to the tropone ring. Even 20b and 23b, whose cavity sizes are not large enough to include Hg^{2+} , formed complexes with Hg^{2+} . Fig. 4 shows Hg^{2+} -induced changes in the chemical shift of H-3 of the tropone ring, among which 20e showed the largest change [25]. Interestingly, while the ethylene proton signals in the Hg^{2+} -complex of 20e shifted to lower field, the signal of H-3 shifted to higher field. The low field shift of the ethylene proton signals was easily explained by the complexation with Hg^{2+} . The high field shift of the aromatic protons must be explained by a decrease of the

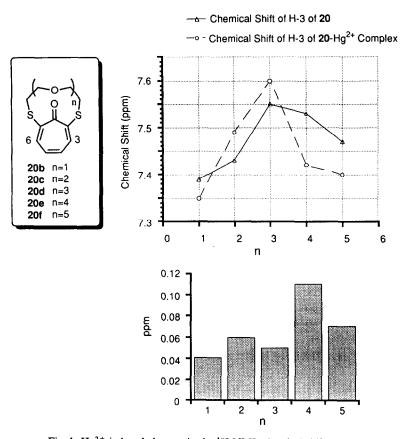
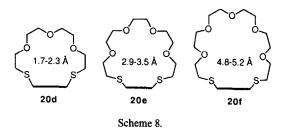



Fig. 4. Hg²⁺-induced changes in the ¹H NMR chemical shifts of 20.

electron-density of the tropone ring due to the complexation. The cavity size of **20e** was estimated to be 2.9–3.5 Å from the CPK model. The sizes of **20f** and **20d** were 4.8–5.2 and 1.7–2.3 Å, respectively. The size of **20e** is, therefore, most appropriate for the size (2.20 Å) of Hg^{2+} . The attempted complex formation of **20e** with various metal ions, i.e., among them the alkaline metals, alkaline earth metals, and some transition metal ions, Li⁺, Na⁺, Mg²⁺, Ca²⁺, Ba²⁺, Co²⁺, Ni²⁺, Fe³⁺, Co²⁺, Zn²⁺, Cd²⁺, and Ag⁺, showed no spectral changes in the ¹H NMR.

Next, a standard aqueous solution containing HgCl₂ was shaken with a CHCl₃ solution of **20b**-f and the aqueous layer was titrated photometrically at 490 and 610 nm in phosphate buffer with added dithizone solution. Fig. 5 shows the molar ratios of the extracted Hg²⁺; **20e** showed the highest value, 0.98, while the others showed lower values, 0.29 for **20b**, 0.35 for **20c**, 0.24 for **20d**, and 0.71 for **20f**.

Thus, a size dependency for complex formation was again confirmed. Among the homologues, **20e** was most effective with respects to extraction, and significant differences were noticed between **20e** and others, such as **20f**. This is attributable to an appropriate size of the cavity in **20e**. In parallel, **23e** was most effective among the homologues. At the same time, the rates of the liberation of Hg²⁺ are very much improved, reflecting a marked decrease of basicity of the sulfur atoms, which are directly connected to the aromatic ring; the previous examples required almost twice as long as the complexation period for complete liberation of Hg²⁺ [14,18].

3.4. 2,7-Disubstituted troponoid dithiocrown ethers **20**, **21c,d**, and **26** and 4,7-disubstituted troponoid dithiocrown ether **30** with thiocyanates

UV-vis spectra of troponoid dithiocrown ethers 20, 21c, d, 26, and 30 were changed by addition of various thiocyanates (100 equiv.) as shown in Table 1 [26]. Dithiocrown ethers 20b-d, 26, and 30 with a smaller cavity did not show significant spectral changes upon the addition of various salts, while dithiocrown ethers 20e and 20f with a larger cavity showed appreciable spectral changes upon the addition of Ca²⁺, Ba²⁺, Hg²⁺, and Cd²⁺. The changes were small when Li⁺, Na⁺, K⁺, NH₄⁺, Mg²⁺, and Zn²⁺ were added. Fig. 6 shows the spectral changes of 20e in CH₃CN upon the addition of various metal salts. The absorption band at 399 nm of 20e decreased with increasing concentration of the complexes. As can be seen from Fig. 7, the decrease in intensity of the band is accompanied by an increase in the absorption in the longer wavelength region. The spectral changes of 20e upon addition of Ca²⁺ were similar to those observed by the addition of Ba²⁺, Mg²⁺, Zn²⁺, Cd²⁺, and Hg²⁺. However, upon addition of Li⁺, Na⁺, K⁺, and NH₄⁺,

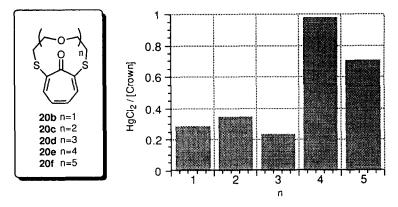


Fig. 5. Relative ratio of extracted Hg2+ by 20.

	20b	20c	20d	20e	20f	21c	21d	26	30
LiSCN		_			_			_	_
NaSCN	_		_		_	_	_	_	
KSCN	_		_	_		_	_		_
NH₄SCN	_		-	_	_	_	_	-	
Ca(SCN) ₂	_	_	_	++	++	+	++	_	_
$Mg(SCN)_2$		-	_	+	+	_	_	_	_
Ba(SCN) ₂		-	_	++	++	+	++		_
$Zn(SCN)_2$	_	_		+	+	+		_	_
Cdl ₂	_		_	+	++	++	++	_	_
Hg(SCN) ₂	_	_	_	++	++	+			_

Table 1 Salt-induced absorption spectral changes of thiacrown ethers in CH₃CN

++ and +, changed strongly and weakly, respectively; -, no appreciable change. Spectral conditions: crown ether (0.02 mM l^{-1}), metal salts (2.0 mM l^{-1}) in CH₃CN at 298 K.

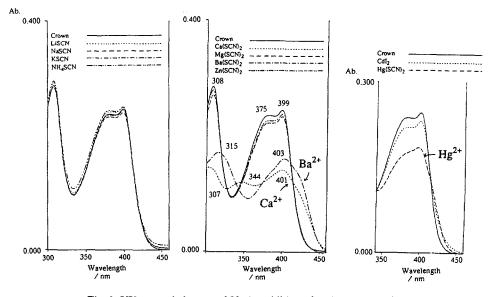


Fig. 6. UV spectral changes of 20e by addition of various metal salts.

there was no additional longer wavelength absorption. The spectral changes were dependent upon the metal ions added, which suggested that the binding sites were dependent on the metal ions.

4. Transport

The transport experiments were performed using a U-type cell, shown in Fig. 8. When an aqueous solution of HgCl₂ (aq. I) was brought into contact with a CHCl₃

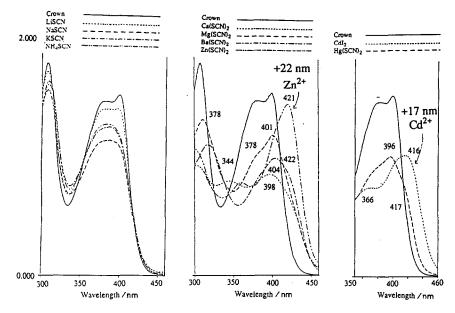


Fig. 7. UV spectral changes of 20e by addition of excess metal salts.

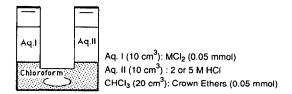


Fig. 8. U-type cell used for transport experiments.

solution of 6e, stirring with a magnetic bar at 20 °C, the concentration of Hg²⁺ in the aq. I decreased. The Hg²⁺ was transported to the CHCl₃ layer and could be extracted by aqueous 2 M HCl (aq. II). After 70 h, the Hg²⁺ was extracted quantitatively into the aq. II as shown in Fig. 9. This process could be carried out repeatedly with perfect reproducibility.

From ¹H and ¹³C NMR spectra, metal salts such as LiBr, NaBr, AgBr, MgCl₂, CoCl₂, NiCl₂, CuCl₂, ZnCl₂, SrCl₂, CdCl₂, BaCl₂, or FeCl₃ were not extracted into the CHCl₃ solution from the aqueous solution. The attempted transport of K ⁺ using the same equipment at 25 °C for 100 h under the same conditions as above with Hg²⁺ did not take place.

In addition, Cu^{2+} did not interfere with the extraction or transport of Hg^{2+} on the basis of ¹H NMR evidence. This was clearly shown when the transport experiment with Hg^{2+} was carried out in the presence of Cu^{2+} ; an aqueous solution of $HgCl_2$ and $CuCl_2$ was treated with a CHCl₃ solution of **6e** and 2 M HCl; all the Hg^{2+} was dissolved in the organic layer after 40 h. After 60 h, 75% of Hg^{2+} was extracted into

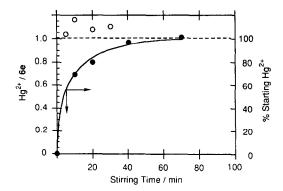


Fig. 9. Dependence on stirring time of ratio of Hg^{2+} and 6e in the complex (\bigcirc) and concentration of Hg^{2+} by reverse-extraction with 2 M HCl (\bigcirc) (adapted from Ref. 17).

the dilute HCl solution. However, Cu^{2+} remained quantitatively in the initial solution. This high selectivity for Hg^{2+} in the transport experiment is interesting (Fig. 10). Similarly, 15e extracted and transferred Hg^{2+} from a mixture containing Cu^{2+} in distilled water (Figs. 11 and 12).

In the transport experiment of Hg^{2+} for the 2:2 condensate 21c, the Hg^{2+} was not extracted quantitatively by aqueous 2 M HCl even after a week. In the CHCl₃ solution, 5% of Hg^{2+} remained and could be extracted by aqueous 5 M HCl. Fig. 13 shows the result of the Hg^{2+} transport with 21c using 2 M HCl and 5 M HCl. The stronger acidity enhanced the transport of Hg^{2+} . This result indicates that protonation of the carbonyl group of 21c is important to release Hg^{2+} .

Fig. 14 shows the transport experiments of Hg^{2+} for 20e using 2 M and 5 M HCl, where the stronger acidic medium facilitates the liberation of Hg^{2+} to enhance the whole transport and extraction processes. Fig. 15 shows the transport experiments of Hg^{2+} for 20b-f. The dithiocrown ether 20e was most effective in Hg^{2+} transport and the transport rates of other 20 species are similar. Dithiocrown ether 20f with

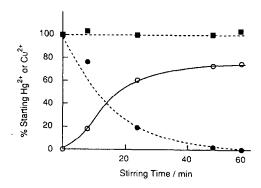


Fig. 10. Carrier-mediated Hg^{2+} transport with 6e in the presence of Cu^{2+} ; \bigcirc , Hg^{2+} transported; \bullet , Hg^{2+} remaining; \blacksquare , Cu^{2+} remaining (adapted from Ref. 17).

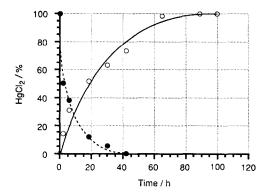


Fig. 11. Extraction and transfer experiments of Hg²⁺ with 15e; ●, Hg²⁺ remaining; ○, Hg²⁺ transported.

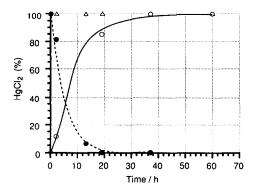


Fig. 12. Extraction and transfer experiments of Hg^{2+} with 15e in the presence of Cu^{2+} ; \bigcirc , Hg^{2+} transported; \bullet , Hg^{2+} remaining; \triangle , Cu^{2+} remaining.

Fig. 13. Transport of Hg^{2+} with 21c using 2 M HCl (a) and 5 M HCl (b); \Box , Hg^{2+} remaining; \bullet , Hg^{2+} transported.

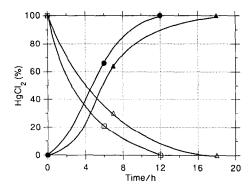


Fig. 14. Transport of Hg^{2+} with **20e** using 2 M HCl and 5 M HCl; \triangle , Hg^{2+} remaining in 2 M HCl; \blacksquare , Hg^{2+} transported in 2 M HCl; \square , Hg^{2+} remaining in 5 M HCl; \blacktriangle , Hg^{2+} transported in 5 M HCl.

the largest cavity was less effective in transport than 20e. The relationship between the rates of transport and the chain length of 20b—f is shown in Fig. 16. The size of the cavity of 20e fits well the size of Hg²⁺. This is consistent with the result obtained in complex formation.

Next, the transport selectivity for Hg^{2+} over Cu^{2+} was investigated with 20e; Fig. 17 shows representative results of the transport of Hg^{2+} ; e.g., by means of 20e, Hg^{2+} is transferred selectively and smoothly, while the coexisting Cu^{2+} remained in the original solution [17,21].

The ¹H NMR spectral changes shown in Table 2 [26] reveal the complex formation of 33 with $HgCl_2$, $AgNO_3$, and $CdCl_2$. The selectivity of 33 was poorer than that of 20e, which showed the highest selectivity for Hg^{2+} as already shown. The transport rates for 20b–f, 26, 30, and 33 are listed in Table 3. The rates of 26 and 30 were nearly the same as those of 20b and 20c. In the Hg^{2+} transport experiment, the rate of 33 was less than 40% that for 20e. The results are summarized in Fig. 18. It is also noteworthy that the rate of release of Hg^{2+} with 33 from the membrane to the receiving phase is slower than those of 20e and 20f. Thus, the tropone function plays an important role in the release of Hg^{2+} to the receiving phase. The result clearly shows that protonation is responsible for generating the 6π -cationic system and assisting the release of Hg^{2+} by Coulomb repulsion in the Hg^{2+} complex.

The proposed transport mechanism is shown in Fig. 19. The Hg²⁺ forms a complex, which is soluble in the solvent of the liquid membrane, CHCl₃. The complexes dissociated immediately when exposed to a strong acid because of the rapid generation of a tropylium cation. From measurement of the pH of the aq. I phase of the U-type cell, the proton transport can be followed [27]. The tropone system assisted the release of the metal ion from the complex.

In order to apply the unique Hg^{2+} affinity of these troponoid dithiocrown ethers, we have prepared the polymer-supported dithiocrown ether 17e. After the polymer 17e was soaked in a standard $HgCl_2$ solution, 17e was filtered off, washed with water, and dried. The dried 17e was washed with 2 M HCl. Quantitative analysis of

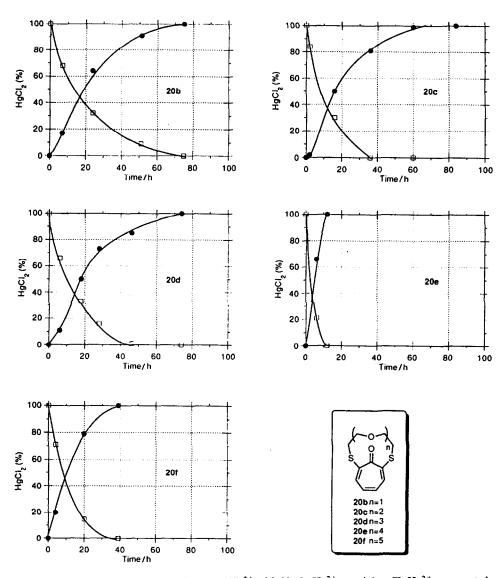


Fig. 15. Extraction and transfer experiments of Hg²⁺ with 20; ●, Hg²⁺ remaining; □, Hg²⁺ transported.

the Hg^{2+} transferred into the HCl solution revealed that 17e retained ca. 25% activity after fixation on the polymer. An anilide 18 failed to extract Hg^{2+} . Therefore, the extraction of Hg^{2+} with the polymer 17e is due to the presence of the dithiocrown ether part, and is not due to physical adsorption. The successful preparation of polymer-supported crown ethers which can capture Hg^{2+} is of great interest from the environmental point of view.

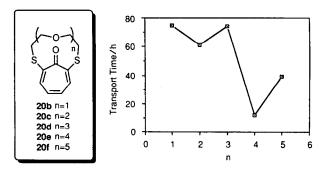


Fig. 16. Transport time of Hg²⁺ by 20.

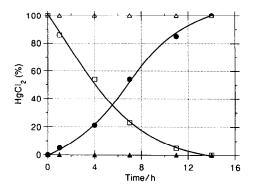


Fig. 17. Selective transport of Hg^{2+} with **20e**; \Box , Hg^{2+} remaining; \bullet , Hg^{2+} transported; \triangle , Cu^{2+} remaining; \blacktriangle , Cu^{2+} transported.

Table 2
NMR spectral changes of 33 upon addition of various metal ions

Free	HgCl ₂	AgNO ₃	CdCl ₂
¹ H NMR (CDCl ₃)	¹ H NMR (CDCl ₃)	¹ H NMR (CDCl ₃)	¹H NMR (CDCl ₃)
δ 7.49 (1H, brs)	δ 7.60 (1H, brs)	δ 7.53 (1H, brs)	δ 7.51 (1H, brs)
7.11-7.20 (3H, m)	7.12-7.22 (3H, m)	7.12-7.22 (3H, m)	7.11-7.20 (3H, m)
3.69 (4H, t, J = 6.8 Hz)	3.68 (4H, t, J = 6.6 Hz)	3.68 (4H, t, J = 6.6 Hz)	3.69 (4H, t, $J = 6.8$ Hz)
3.59-3.64 (12H, m)	3.64-3.65 (12H, m)	3.64 (12H, s)	3.59-3.65 (12H, m)
3.14 (4H, t, J = 6.8 Hz)	3.27 (4H, t, J = 6.6 Hz)	3.15 (4H, t, J = 6.6 Hz)	3.15 (4H, t, J = 6.8 Hz)

5. Association constant

5.1. UV spectrometry

Association constants were determined using the Benesi-Hildebrand approximate equation [28] and the non-linear curve fitting method [29,30] from the absorbance change in the UV spectra (CH₃CN) or the chemical shift change in the ¹H NMR

Table 3
Transport rate for Hg²⁺ for various crown ethers

Crown ethers	Transport rate (μM h ⁻¹)		
20b	1.2		
20c	1.7		
20d	0.9		
20e	5.5		
20f	2.3		
26	1.2		
30	1.2		
33	2.0		

Transport rate: (transport quantity/time) after 6 h at 298 K.

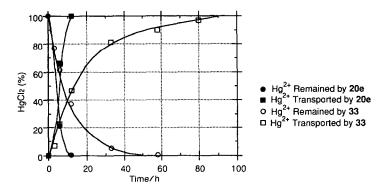


Fig. 18. Comparison of transport experiments of Hg²⁺ with 20e and 33.

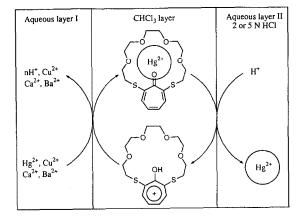


Fig. 19. Transport mechanism.

(CD₃CN) with the titration of metal salts at 298 K [26]. Fig. 20 shows the Benesi-Hildebrand plots of **20e** by the addition of Li⁺ in CH₃CN. The stoichiometry of the complex should be 1:1. The association constant K_s was calculated from the slope. Similarly, the association constants for other ions, Na⁺, K⁺, and NH₄⁺, were determined by the Benesi-Hildebrand method. Association constants of **20e** for complexes formed by the addition of Ca²⁺, Ba²⁺, Zn²⁺, Mg²⁺, Cd²⁺, and Hg²⁺ were calculated from the titration curves. The dithiocrown ether **20e** showed the following selectivity: Na⁺ < K⁺ < NH₄⁺ < Li⁺ < Mg²⁺ < Zn²⁺ < Cd²⁺ < Hg²⁺ < Ba²⁺ < Ca²⁺ in CH₃CN. Fig. 21 shows the curve-fitting plot of change in absorbance upon the addition of salts. These results are summarized in Table 4. The observed larger complexation constants for Ca²⁺ and Ba²⁺ being greater than Hg²⁺ are not apparently consistent with the results from the transport experiment, which showed that only Hg²⁺ was transported. Probably, the complexes of Ca²⁺ and Ba²⁺ are not soluble in CHCl₃, the solvent for the transport experiments. Failure to

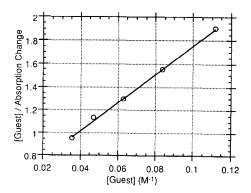
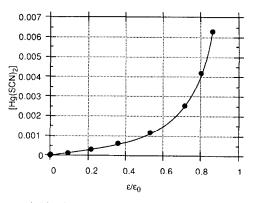



Fig. 20. Benesi-Hildebrand plot for the mixture of 20e and LiSCN.

 $\Delta \varepsilon$ / $\Delta \varepsilon_0 = (\varepsilon_{observed} - \varepsilon_{initial})$ / $(\varepsilon_{complex} - \varepsilon_{initial})$

Fig. 21. Titration curve showing the change in intensity in the UV spectra upon mixing 20e and $Hg(SCN)_2$.

	Method	Salts	K_{s}	$\log K_{\rm s}$	R^{a}
20e	a	LiSCN	23	1.36	0.999
	a	NaSCN	4	0.60	0.992
	a	KSCN	18	1.26	0.999
	a	NH₄SCN	21	1.32	0.994
	b	Ca(SCN) ₂	7250	3.86	0.999
	ь	$Mg(SCN)_2$	20	1.30	0.999
	b	Ba(SCN) ₂	5541	3.73	0.999
	Ъ	$Zn(SCN)_2$	24	1.37	0.999
	ь	Cdl ₂	73	1.86	0.999
	b	$Hg(SCN)_2$	1020	3.01	0.999
	С	$Hg(SCN)_2$	1090	3.04	0.999
20f	c	$Hg(SCN)_2$	354	2.55	0.999
33	С	Hg(SCN) ₂	516	2.71	0.995

Table 4

K₀ values determined by ¹H NMR and UV spectrum titration in CH₃CN or CD₃CN

rationalize the results in terms of the log K_s (CH₃CN) values suggests that the log K_s (CHCl₃) values for the interaction between Hg²⁺ and **20e** in these cases may be larger than those of Ca²⁺ or Ba²⁺.

The absorption maximum of 20e was shifted largely by complexation as shown in Table 5. The largest shift was observed when Zn^{2+} was complexed with 20e. The metal ion selectivities observed from the λ_{max} shifts do not correlate with the association constants of the complexes in each case. This fact is predictable from the results reported by Vögtle [31].

5.2. ¹H NMR spectrometry

New signals separated from those of the uncomplexed 33 when Hg(SCN)₂ was added. A triplet signal for the ethylene protons adjacent to the sulfur atom of 33

Table 5
Absorption maximum shifts of various 20e complexes in acetonitrile

Metal ions	λ (nm) (ϵ)	$\Delta\lambda$ (nm)	
20e	399 (11400)	_	
Mg ²⁺ Ca ²⁺ Ba ²⁺ Zn ²⁺	401 (8800)	2	
Ca ²⁺	398 (6400)	1	
Ba ²⁺	404 (7400)	5	
Zn ²⁺	421 (10800)	22	
Cd ²⁺	416 (7700)	17	
Cd ²⁺ Hg ²⁺	396 (7600)	3	

 $[\]Delta \lambda = |\lambda_{\text{complex}} - 399|$ at 298 K in CH₃CN.

a, Benesi-Hildebrand equation (UV spectrum); b, curve-fitting method (UV spectrum); c, ¹H-NMR titration. ^aR factor for curve fitting. Conditions: CH₃CN or CD₃CN at 298 K.

appeared at δ 3.12, which shifted to the lower field at δ 3.32 due to the formation of the 33-Hg²⁺ complex (Fig. 22). The association constant of 33 determined using the integral ratio in the ¹H NMR spectrum (Fig. 23) was 515 M⁻¹, which is smaller than that of 20e (1090 M⁻¹), determined by the change in chemical shift in the ¹H NMR spectrum (Fig. 24). It is consistent with the result (1023 M⁻¹) determined by the UV spectra (Fig. 21). The association constant of 20f with Hg²⁺ with the larger

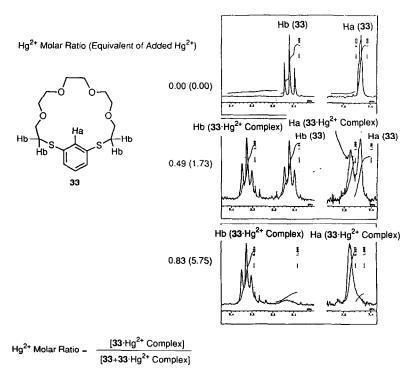


Fig. 22. ¹H NMR spectral changes of 33 by addition of Hg(SCN)₂.

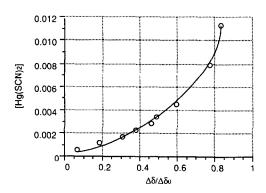


Fig. 23. ¹H NMR titration curve of 33 for Hg(SCN)₂.

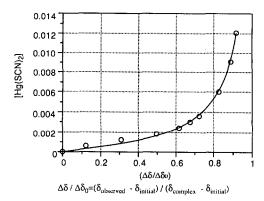


Fig. 24. ¹H NMR titration curve for the mixture of 20e and Hg(SCN)₂.

cavity size than 20e was lower than that of 20e. This result is consistent with the transport data observations [17].

6. Stereostructure of the mercurophilic dithiocrown derivative

Fortunately, **20b** and its mercury complex crystallized nicely. According to the X-ray diffraction structural analysis [25], the mercury complex of **20b**, a monoclinic crystal with cell dimensions of a=11.693(1), b=15.083(3), c=10.349(1) Å, and $\beta=98.000(8)^{\circ}$ with $P2_1/a$, showed that its structure contains two mercury atoms per one **20b** as has been confirmed at the final stage, where the R factor is 0.047. It is noteworthy that two Hg^{2+} are coordinated respectively with one carbonyl oxygen and one sulfur atom as depicted in Fig. 25; **20b**, whose cell dimensions were a=13.400(2), b=28.763(4), and c=12.036(2) Å with Pbca, had a non-planar sevenmembered ring and the carbonyl group deviated particularly from the plane set by adjacent C=C bonds, by as much as 32.0° , while the deviation in the mercury complex of **20b** was 25.9° , as shown in Fig. 26.

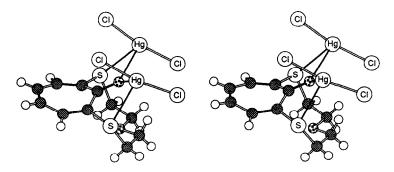


Fig. 25. Stereoview of Hg²⁺ complex of 20b.

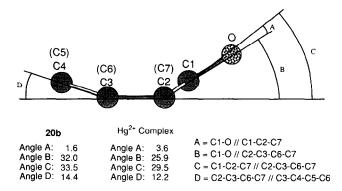


Fig. 26. Schematic side-view of tropone nucleus of 20b and Hg²⁺ complex.

Further X-ray structural analyses of **20** and their mercury complexes will be important subjects to unravel the complexation of troponoid dithiocrown ethers.

7. Conclusions

Troponoid dithiocrown ethers displayed a unique selectivity towards Hg^{2+} , one of the most harmful heavy metal ions. Among troponoid dithiocrown ethers, **20e** was the most effective mercurophilic dithiocrown ether and a more effective Hg^{2+} transport carrier than the benzenoid dithiocrown ether **33** with a similar cavity size. While 19-dithiocrown-6-ether [9] and 16-dithiocrown-5-ether [9] formed complexes with Hg^{2+} , acid treatment with 2 M HCl did not liberate Hg^{2+} . Therefore, it can be concluded that the tropone ring assisted the release of the metal ion from the complex by Coulomb repulsion, since the protonation generates the 6π -cationic system. Furthermore, the changes in the UV spectra of the troponoid thiocrown ethers upon the addition of ions can be used as a probe to analyze complex formation. These are characteristic of troponoids.

It has become apparent that the cavity size of the dithiocrown ethers is an important parameter for effective extraction and transport of Hg^{2+} , but the derivatives with a smaller ring still extract and transport Hg^{2+} . It is now suggested that Hg^{2+} does not penetrate deeply into the dithiocrown rings, and this geometry plays a positive role in facilitating the reversible complexation.

References

- [1] C.J. Pedersen, J. Am. Chem. Soc., 89 (1967) 2495; C.J. Pedersen, J. Am. Chem. Soc., 89 (1967) 7017.
- [2] Recent rewiews: for examples, T. Wang, J.S. Bradshaw and R.M. Izatt, J. Heterocyclic. Chem., 31 (1994) 1097; H.C. Visser, D.N. Reinhoudt and F. de Jong, Chem. Soc. Rev., (1994) 75.
- [3] T. Nozoe, Sci. Rep. Tohoku Univ. I, 34 (1950) 199; W. von E. Doering and L.H. Knox, J. Am. Chem. Soc., 73 (1950) 828; J.M. Robertson, J. Chem. Soc., (1951) 1222; Y. Oka and S. Matsuo, Bunseki Kagaku, 7 (1958) 215.

- [4] T. Nozoe, K. Takase and H. Matsumura in M. Kotake (ed.), Comprehensive Organic Chemistry, Vol. 13, Asakura Shoten, Tokyo, 1959.
- [5] F. Pietra, Chem. Rev., 73 (1973) 293.
- [6] T. Nozoe, Yakugaku, 3 (1949) 174.
- [7] T. Asao and Y. Kikuchi, Chem. Lett., (1972) 423.
- [8] C.J. Pedersen, J. Org. Chem., 36 (1971) 254.
- [9] J.S. Bradshaw, R.A. Reeder, M.D. Thompson, E.D. Flanders, R.L. Carruth, R.M. Izatt and J.J. Christensen, J. Org. Chem., 41 (1976) 134.
- [10] G. Wu, W. Jiang, J.D. Lamb, J.S. Bradshaw and R.M. Izatt, J. Am. Chem. Soc., 113 (1991) 6538.
- [11] B. de Groot and S.J. Loeb, J. Chem. Soc., Chem. Commun., (1990) 1755.
- [12] A.J. Brake, G. Reib and M. Schröder, J. Chem. Soc., Chem. Commun., (1992) 1092.
- [13] J.W. Sibert, S.J. Lange, C. Stern, B.M. Hoffman and A.G.M. Barrett, J. Chem. Soc., Chem. Commun., (1994) 1751.
- [14] M.G. Banwell, Aust. J. Chem., 44 (1991) 1.
- [15] A. Mori, S. Hirayama, Y. Goto and H. Takeshita, Bull. Chem. Soc. Jpn., 61 (1988) 1029.
- [16] A. Mori, Y. Isayama, T. Kusaba and H. Takeshita, Eng. Sci. Repts. Kyushu Univ., 6 (1985) 185.
- [17] H. Takeshita, A. Mori and S. Hirayama, J. Chem. Soc., Chem. Commun., (1989)564.
- [18] S. Hirayama, A. Mori and H. Takeshita, Eng. Sci. Rep. Kyushu Univ., 13 (1992) 349.
- [19] H. Takeshita, S. Hirayama and A. Mori, unpublished result.
- [20] H. Takeshita, A. Mori and H. Suizu, Chem. Lett., (1986) 593; H. Takeshita, A. Mori and H. Suizu, Bull. Chem. Soc. Jpn., 60 (1987) 1429.
- [21] A. Mori, B.-Z. Yin and H. Takeshita, Chem. Express, 7 (1992) 313.
- [22] D.E. Bergbreiter and J.R. Blanton, J. Org. Chem., 50 (1985) 5828.
- [23] Purchased from Aldrich Co., Ltd., and the acid number was stated as 15 mg KOH/g.
- [24] T. Mukai, Bull. Chem. Soc. Jpn., 31 (1958) 846.
- [25] H. Takeshita, B.-Z. Yin, K. Kubo and A. Mori, Bull. Chem. Soc. Jpn., 66 (1993) 3451.
- [26] H. Takeshita, K. Kubo and A. Mori, unpublished result.
- [27] E. Kimura, C.A. Dalimunte, A. Yamashita and R. Machida, J. Chem. Soc., Chem. Commun., (1985) 1041.
- [28] H.A. Benesi and J.H. Hildebrand, J. Am. Chem. Soc., 71 (1949) 2703.
- [29] R.P. Lange, J. Am. Chem. Soc., 84 (1962) 1185.
- [30] Y. Takai, Y. Okumura, T. Tanaka, M. Sawada, S. Takahashi, M. Shiro, M. Kawamura and T. Uchiyama, J. Org. Chem., 59 (1994) 2967; M. Sawada, Y. Okumura, M. Shizuma, T. Takai, Y. Hidaka, H. Yamada, T. Tanaka, T. Kaneda, K. Hirose, S. Misumi and S. Takahashi, J. Am. Chem. Soc., 115 (1993) 7381.
- [31] H.-G. Löhr and F. Vögtle, Acc. Chem. Res., 18 (1985) 65.